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abStraCt

Although fires in wetlands would seem to be rare or impossible by definition, these eco-
systems do occasionally experience fire.  A common feature of fires in wetlands is smol-
dering combustion in organic soils, such as peat and muck.  Increasing occurrence and 
size of these events from the Arctic to the tropics has been matched by increasing research 
interest, yet our understanding of smoldering lags behind that of flame-based combustion.  
Smoldering fires represent hazards to human health and safety locally, and global ecologi-
cal concerns due to their potential for carbon release.  Additionally, ecological effects of 
smoldering ground fires are generally perceived to be negative, particularly where their 
historical frequencies are thought to be low.  This synthesis describes some aspects of 
smoldering combustion, and discusses some of the particular ecological aspects of ground 
fires, focusing on examples from the southeastern United States.  We suggest that despite 
the well-recognized negative aspects of ground fires, there may exist under-recognized 
ecological benefits that should be further studied and weighed against known hazards 
posed by these events.
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introduCtion

Fires in wetlands frequently occur in the 
form of smoldering fires in the deep organic 
soils that accumulate in these ecosystems.  
Where frequently burned uplands commonly 
occur adjacent to wetlands, fires can occur in 
wetlands with surprising frequency.  In the 
southeastern USA, pine flatwoods adjacent to 
marshes or swamps can contribute ignition 
sources that result in fires as frequently as ev-
ery decade (Wade et al. 1980, Abrahamson and 

Hartnett 1990, Snyder 1991).  However, dur-
ing prolonged drought conditions, the organic 
soils found in many wetlands may dry suffi-
ciently to ignite and burn (de Groot 2012).  
Such fires, variously called ground fires, peat 
fires, or muck fires, are the result of smolder-
ing combustion in organic soils.  They typical-
ly occur rarely, but produce substantial ecolog-
ical effects and hazards for human health and 
safety.  Different in many ways from the dra-
matic conflagrations often pictured in the 
news, these slow-motion wildfires pose unique 
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challenges and hazards that make them worthy 
of special consideration. 

Smoldering CombuStion

In contrast to flaming combustion, which 
typically lasts a fraction of an hour at a given 
location, smoldering is a flameless form of 
combustion that occurs when oxygen reacts 
with the surface of solid fuels (Ohlemiller 
1995).  This form of combustion typically 
takes place at much lower temperatures than 
flaming combustion (500 °C to 700 °C versus 
1500 °C to 1800 °C; Rein et al. 2008).  In ad-
dition to occurring to some extent in woody 
fuels, smoldering is chiefly the type of com-
bustion found in duff (e.g., Varner 2005), peat, 
and muck, and characterizes fires found in eco-
systems in which these soils or fuel types dom-
inate during dry conditions.  In desiccated 
mucks and peats, smoldering can occur under 
surprisingly high soil-moisture contents, de-
pending less on parent material than on miner-
al content (Frandsen 1997, Benscoter 2011, 
Watts 2013).  In these fuels, combustion oc-
curs as two sets of chemical reactions, known 
as Regimes I and II.  In Regime I, pyrolysis 
and partial oxidation of the fuel takes place, 
resulting in dehydration and charring.  In Re-
gime II, char oxidation occurs, reducing the 
pyrolyzed fuel to ash (Hadden et al. 2012).  
These combustion reactions can continue in 
deep organic soils for many days, or even 
months in cases such as the Kalimantan peat 
fires in Indonesia in 1997 (Page et al. 2002, 
Usup et al. 2004), and Georgia’s Okefenokee 
Swamp fire (Florida Times-Union 2012).  In-
deed, the capability of organic materials to ex-
perience the spontaneous initiation of smolder-
ing at nearly ambient temperatures under fa-
vorable conditions has been posited as an ex-
planation for the occurrence of some long-
burning fires in coal seams around the world, 
which qualify smoldering fires as the largest 
and longest-running fires on Earth (Stracher 
and Taylor 2004).

When ground fires do become established, 
they are notoriously difficult to control or ex-
tinguish.  One reason for this is the tendency 
of smoldering to proceed deep into the soil 
(depending on such conditions as soil moisture 
and organic content), and to spread laterally 
far underground away from obvious features 
such as vents that indicate combustion (Rein 
2009).  The result may be extensive burning of 
soil far below the surface, with little indication 
of the extent or location of smoldering (Rein et 
al. 2008).  Additionally, the tendency of organ-
ic soils to become hydrophobic (i.e., repel wa-
ter) when desiccated means that application of 
water, foam, or other agents often results in 
pooling on the surface, with only slow perco-
lation downward toward the site of combus-
tion.  Regardless of their ability to penetrate, 
any suppression agent must be applied in lo-
gistically prohibitive amounts to be effective.

Practically speaking, it is therefore usually 
not feasible to deliver sufficient water to extin-
guish ground fires.  A number of additional 
control techniques are employed, but all have 
their potential drawbacks.  Where road access 
is available, heavy equipment is sometimes 
used to cut firelines in desiccated muck or peat 
(Figure 1).  However, the depth of the organic 
layer—sometimes meters deep—means that 
this can be time consuming and expensive.  
Also, the integrity of the fireline can be com-
promised if the smoldering front passes under-
neath it in undetected organic soil.  In wetlands 
as in uplands, the cutting of fire lines can have 
negative ecological impacts that remain long 
after the fire is out.  Specialized lance-shaped 
nozzles on hoses are sometimes used to deliver 
water laterally from the end of a pointed tip, 
which is shoved into the ground in an attempt 
to access the site of smoldering.  This method 
requires much time and water as well.  Addi-
tives such as guar gum, chemical suppressant, 
or detergent for its wetting properties, have 
been employed by firefighters in attempts to 
quench ground fires.  However, the efficacy of 
chemical additives, retardants, and gels in re-
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ducing the resources required to extinguish 
peat fires has not been established, and manag-
ers should weigh their perceived benefits 
against the potential for environmental harm 
from their application to sensitive areas.

Human and enVironmental 
HaZardS

Many reasons exist to attempt to control or 
extinguish ground fires, many due to the hu-
man costs of these events.  The smoke from 
ground fires is produced abundantly day and 
night, in contrast to wildfires consisting pri-
marily of flames—the latter type of combus-
tion being heavily influenced by diurnal weath-
er patterns.  With its production independent 
of atmospheric convection, ground fire smoke 
can accumulate during periods of stable atmo-

spheric conditions, causing reductions in visi-
bility on roadways (Figure 2).  Low-lying ar-
eas are particularly susceptible to the accumu-
lation of smoke and fog, and many vehicle ac-
cidents attributable to this dangerous combina-
tion occur at night, when smoke from smolder-
ing fires continues to be produced but tends to 
linger due to calm wind conditions (Abdel-Aty 
et al. 2011). 

Smoke from ground fires is a concern for 
human health in addition to motorist safety.  
Although smoke from fires is only one source 
of atmospheric pollutants, wildland fire smoke 
contains various classes of particulate matter 
(See et al. 2007, Monroe et al. 2009).  Among 
these, particulate matter with average particle 
sizes of 2.5 microns or smaller—referred to as 
PM2.5—is considered particularly harmful for 
cardiovascular health because of the ease with 
which these particles pass into the body, and 
their large surface area on which toxic com-
pounds may be adsorbed (Brunekreef and Hol-
gate 2002).  Ground fires produce more of this 
class of airborne pollutant than other types of 
wildfires (Muraleedharan et al. 2000); this 
characteristic, along with the persistent nature 
of the fires themselves and the tendency of the 
smoke to remain near the ground, makes 

Figure 1.  Many passes of this bulldozer were re-
quired to cut a fireline to mineral soil through the 
thick peat at this ground fire in northern Florida, 
USA.

Figure 2.  Smoke from ground fires often dissi-
pates slowly, and contributes to serious degrada-
tion of visibility on roadways.
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smoke from ground fires a threat to smoke-
sensitive populations such as the elderly, chil-
dren, and asthmatics (Rappold et al. 2011).  

eCologiCal eFFeCtS

The persistence of smoldering fires, despite 
their lower temperatures, can ultimately trans-
fer more heat to surrounding soils and plants 
than flaming combustion (Kreye et al. 2011).  
The combination of heating, direct consump-
tion of roots embedded in organic soils, and 
organic soil loss to combustion can result in 
significant damage and mortality to trees (Ewel 
and Mitsch 1978, Hartford and Frandsen 1992, 
Stephens and Finney 2002, Watts et al. 2012).  
The potential damage to trees from soil con-
sumption is compounded by the frequent ten-
dency of ground fires to burn substantially 
deeper into soils at the base of trees (Figure 3).  
This phenomenon has been noted by a number 
of authors (e.g., Miyanishi and Johnson 2002, 
Hille and Stephens 2005, Rein et al. 2008).  
Theorized reasons for this phenomenon in-
clude interception of rainfall by tree canopies, 
resulting in lower soil moisture under the drip 
line (Hille and Stephens 2005); this effect 
would be magnified by further withdrawal of 
soil moisture within the tree’s root zone.  The 

tendency of organic soils to shrink during des-
iccation could also cause the formation of air 
ducts as drying soils pull away from roots; 
these conduits would enhance consumption of 
the soil, and the absence of direct contact with 
tree roots, which are often left largely intact 
following the smoldering of soil around tree 
bases.

In the case of some ecosystems, such as 
cypress swamps, ground fires may leave some 
pond cypress (Taxodium distichum var. imbri-
carium [Nutt.]) or bald cypress (Taxodium dis-
tichum var. distichum [L. (Rich.)]) alive, while 
killing potential competitors.  In this way, fires 
of moderate severity can be a mechanism of 
continued dominance by cypress in swamps.  
Alternatively, in the case of severe ground 
fires, smoldering can cause shifts in communi-
ty composition from forested ecosystems to 
marshes (Duever 1984, Casey and Ewel 2006).  
One proposed mechanism for conversion from 
swamp to marsh following smoldering fires is 
that deep smoldering during exceptionally dry 
periods kills large cypress trees, the majority 
of whose roots are situated within the relative-
ly deep (1 m to 2 m or more) peat in the interi-
ors of swamps (Gunderson 1977).  Additional-
ly, because germination and seedling survival 
of both varieties of cypress are inhibited by 
extended flooding and deep water (as described 
in bald cypress by Day et al. 2006), consump-
tion of peat soil may cause the hydroperiod at 
a site to increase sufficiently such that a shift 
from domination by cypress to marsh commu-
nities could occur at a site subject to smolder-
ing following a return to nominal hydrologic 
regimes.  Analogous changes likely occur in 
other biomes in which microtopographic 
changes caused by smoldering might result in 
changes to vegetation communities arising 
from alterations in local hydrology or micro-
climate.

In addition to this posited effect of smol-
dering fires on vegetation at the scale of local 
plant communities, soil-consuming fires could 
theoretically produce direct hydrologic chang-

Figure 3.  Consumption of organic soil around the 
root zone of this tree indicates the depth of burn, 
and soil loss. Hydroperiod in the consumed area 
will be longer due to the elevation change caused 
by the fire. 
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es extending beyond the immediate extent of 
the burned perimeter.  In areas of low topo-
graphic relief, ground fires may change the 
volume of depressional isolated wetlands by 
changing soil elevation, and thus basin ba-
thymetry when these areas are flooded.  Given 
a finite amount of water delivered via precipi-
tation or overland flow in a given year, a 
change in the storage volume of a wetland fol-
lowing fire (due to changes in the basin depth 
caused by consumption of soil) may provide 
increased water availability in the wetland, 
while water availability to higher-elevation ar-
eas of the landscape may be more limited as it 
more rapidly is drawn to the depressions. 

Implications of this feedback to hydrology 
from smoldering fires extend to wildlife spe-
cies.  Greater water storage or longer hydrope-
riod may mean that small wetlands may be 
able to serve for longer periods of time as wa-
tering holes for wildlife, or as habitat for their 
prey, during dry periods.  In southern Florida, 
for example, two federally listed endangered 
species (the wood stork, Mycteria americana, 
and the Florida panther, Felis concolor coryi) 
may depend on the existence of standing water 
late in the region’s dry season (Fleming et al. 
1994, Cox et al. 2006, Benson et al. 2008).  
The additional stresses on already-imperiled 
wildlife species due to predicted increases in 
climatic variability may make drought-condi-
tion refugia ever more valuable.  Therefore, to 
the extent that soil-consuming ground fires 
maintain open water by lowering soil eleva-
tions and reducing encroachment of vegeta-
tion, there may be an indirect ecological bene-
fit of ground fires in certain areas.

The ecological effects of ground fires ex-
tend further beyond direct regional impacts.  
Organic soils are the result of accumulation of 
plant biomass, over many decades to centuries 
or longer, and ground fires can consume much 
of this in a matter of weeks.  Organic soils rep-
resent enormous stocks of terrestrial carbon—
peatlands, for example, represent only 2 % to 
3% of the Earth’s surface area, yet may com-
prise a third of the planet’s terrestrial carbon 

(Holden 2005).  The enormous carbon stocks 
found in organic soils can result in ground fires 
releasing substantial amounts of carbon to the 
atmosphere (Page et al. 2002, Mack et al. 
2011)—indeed, Langmann and Heil (2004) es-
timate that peat fires may produce emissions 
75% higher per hectare than fires consuming 
standing vegetation alone.  Existing efforts to 
quantify the potential for carbon sequestration 
on public lands as a means of mitigating an-
thropogenic CO2 emissions (e.g., Depro et al. 
2008, Failey and Dilling 2010) will further in-
crease interest in soil-consuming fires among 
managers who may be charged with prevent-
ing them or accounting for their effects on eco-
system carbon pools.

ConCluSion

The determinants, behavior, and effects of 
smoldering combustion in ground fires are far 
less understood than those of flaming fires.  
Most of the work that has occurred focused on 
organic soils in areas such as Canada and Alas-
ka, where vast areas of peats occur (Benscoter 
et al. 2011, Turetsky et al. 2011, de Groot 
2012).  Much progress has been made in un-
derstanding the characteristics of tropical 
ground fires as well, where human activities 
such as agricultural clearing directly threaten 
peatlands in areas such as Indonesia (Page et 
al. 2002) and Borneo.  Work in the southeast-
ern US, where peat occurs in both temperate 
and subtropical biomes, has been limited to 
pocosin soil in North Carolina (Reardon et al. 
2007) and cypress soils in Florida (Watts 
2013).  Despite its smaller areas of peat and 
muck, the region’s large and rapidly growing 
human population provides reason for concern 
over local impacts of ground fire emissions; 
meanwhile, the presence of frequently burned 
upland ecosystems adjacent to areas of deep 
organic soils means potential hydrologic 
changes could increase the prevalence of 
ground fires in the region. 

Future climate change scenarios predict 
drought events of greater severity and frequen-
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cy in many areas (IPCC 2007), including those 
with the potential for ground fires to occur 
(Running 2006, Liu and Stanturf 2010).  These 
risks of increased ground fires are likely to be 
compounded by altered local hydrology due to 
increased water demands and land cover 
changes resulting from growing human popu-
lations.  In advance of these likely scenarios, 
we should improve our fundamental under-
standing of smoldering combustion, as well as 
the linkages between the chemistry and phys-
ics of smoldering, and the ecological and man-
agement implications of ground fires.  Impor-
tant topics to consider include: the scaling of 
smoldering studies from the lab bench to the 
stand or marsh; modeling the behavior of 

ground fires over their duration, to include in-
fluences of landscape and environmental het-
erogeneity; consequences of changes in micro-
topography to vegetation and hydrology; ef-
fects of ground fires on habitat quality for spe-
cies of concern; and the impacts and effective-
ness of control techniques.  While many effects 
of ground fires are broadly accepted as nega-
tive, an improved understanding of these 
events in their local ecological contexts will 
increase the ability of decision makers to adopt 
appropriate strategies toward ground fires, and 
for managers to implement efficient and eco-
logically appropriate techniques to control 
them.
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